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Turbulent transport of fluctuating turbulent energy, turbulent momentum flux, 
temperature variance, turbulent heat flux, etc. in the upper part of the atmospheric 
boundary layer is usually dominated by buoyant transport. This transport is respon- 
sible for the erosion of the overlying stably stratified region, resulting in progressive 
thickening of the mixed layer. It is easy to show that a classical gradient transport 
model for the transport will not work, because it transports energy in the wrong 
direction. On the other hand, application of the eddy-damped quasi-Gaussian approxi- 
mation to the equations for the third moments results in a transport model which 
predicts realistic inversion rise rates and heat-flux profiles. This is also a gradient 
transport model, but like molecular transport in solutions, a flux of one quantity 
depends on gradients of all relevant quantities. Transport coefficients are modified by 
the heat flux, so that the vertical transport is severely reduced near the inversion base. 
A simple Lagrangian model of transport of an indelible scalar in a stratified flow indi- 
cates that the form of the modified transport coefficients results from a marked aniso- 
tropic change in the Lagrangian time scale in stratification. 

1. Introduction 
In  an atmospheric boundary layer both buoyancy and wind shear are usually im- 

portant, but not in the same place. The wind shear is more intense near the surface and 
falls off strongly with height, while the buoyant forces decrease only slowly with 
height. If we consider, in particular, a situation typical of early daytime, with both 
wind and radiant surface heating, producing a surface mixed layer eroding pro- 
gressively a capping inversion, the wind shear will dominate in the lowest part, where 
the buoyancy can be neglected, while the wind shear may be neglected in the upper 
two-thirds (Lumley & Panofsky 1964, p. 74). Again, in the inversion base the abrupt 
fall-off in vertical transport will usually produce a sharp local wind shear. In the 
majority of the mixed layer, however, it  is buoyancy which is responsible for trans- 
porting the variances and fluxes of temperature and momentum to the upper part of 
the mixed layer, and for the erosion of the inversion, which results in the rise of the 
inversion base. 

Figure 1 (a) shows the vertical distributionof vertical variance and turbulent energy 
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(a)  

(b)  
FIGURE 1. (a) Observed profiles of turbulence quantities in buoyancy-driven mixed layers 
(Zeman 1975). (b) The flux q”., and -i3(&)/&z3 as calculated by a scalar transport model 
(Zeman 1975). 

in a convectively driven atmospheric mixed layer, together with the vertical fluxes of 
vertical variance and energy and the divergence of the flux of turbulent energy (from 
Zeman 1975). The vertical turbulent transport of turbulent energy must remove turbu- 
lent energy from the region near the surface and transport it to the vicinity of the 
inversion base. In  figure 1 ( b )  we see the form of the divergence of turbulent energy flux 
which would be produced by a gradient transport model. Energy is now removed from 
the centre of the layer, and only a fraction is sent up to the inversion base, the remainder 
being sent down to the surface. Thus a layer powered by a gradient transport model 
cannot behave properly, and in fact the rise of the inversion base is very poorly pre- 
dicted, while the vertical distribution of turbulent energy is wildly in error. 

The failure of a gradient transport model is, of course, not surprising. The reasons 
why gradient transport models are not appropriate for turbulence have been exten- 
sively discussed (Tennekes & Lumley 1972, pp. 42-50; Corrsin 1974). Summarizing, 
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gradient transport models assume that the length and time scales of the turbulence 
are small relative to the length and time scales of the mean motion; that is to say, that 
there is a spectral gap (Lumley & Panofsky 1964, p. 43). This, of course, is rarely the 
case in a turbulent flow, where the length and time scales of the turbulent motion are 
usually of the same order as the length and time scales of the mean motion. Neverthe- 
less, there are situations where gradient transport ideas should work; these are situa- 
tions in which there is locally only one length and time scale in the flow, so that the 
flux must be proportional to the gradient (and to anything else which has the same 
dimensions). Since we do not expect that a buoyancy-driven mixed layer will have this 
simple property, we should not expect a gradient transport model to work. 

Nevertheless, in what follows we shall present a technique for constructing a more 
sophisticated gradient transport model, which does work. We may consider that 
gradient transport ideas are an outcome of a kinetic-theory approach to turbulence. In  
a buoyancy-driven mixed layer we have a number of quantities which must be trans- 
ported (the variances and fluxes); these would play the role of different species in a 
kinetic-theory approach. We know that molecular transport in salt water, for example, 
involves a heat flux proportional not only to a temperature gradient, but to a salinity 
gradient as well (the Dufour effect), while the salt flux is proportional not only to the 
salinity gradient, but also to the temperature gradient (the Soret effect; Bird, Curtiss 
& Hirschfelder 1955). If the variances and fluxes in the turbulent situation play the 
role of species, we may expect that the fluxes of these quantities will involve gradients 
of all of them. Indeed, a combination of functional and dimensional analysis and 
invariance theory suggests this (Lumley & Khajeh-Nouri 1974). We shall find, in 
addition, that there are specific modifications to the transport coefficients by buoyancy. 

2. The eddy-damped quasi-Gaussian approximation 
Although Lumley & Khajeh-Nouri (1974) suggest a number of different terms 

which may be present in buoyant transport situations, they all appear with unknown 
coefficients, and existing experiments are not adequate to determine all their values 
unambiguously. We need a simple, consistent physical model to do this. Hanjalid & 
Launder (1972) have suggested a procedure which produces workable equations in the 
non-buoyant case. They take the equations for the third-order quantities (fluxes of 
variances and fluxes), neglect convective derivatives, dissipative terms and terms 
dependent on the mean velocity gradients (all of which can be shown to be about an 
order of magnitude smaller than the terms retained), replace the fourth-order products 
which appear explicitly by their quasi-Gaussian form (Monin & Yaglom 1971, p. 233), 
but replace the pressure correlations, which are integrals over fourth-order products, 
by relaxation terms, i.e. the third-order term divided by a time scale. Although Han- 
jalid & Launder do not refer to it by name, the last procedure is essentially the eddy- 
damped quasi-Gaussian approximation discussed by Orszag ( 1970). In  discussing the 
failure of the classical quasi-Gaussian approximation, he points out that there is 
insufficient damping owing to nonlinear interactions and that the spectral transfer 
produced by the application of the quasi-Gaussian approximation everywhere is 
reversible, and results in oscillatory behaviour. Representing the pressure integral by 
an irreversible damping term removes this behaviour. Although the discussion in 
Orszag (1 970) relates to Fourier space, it  is equally applicable to real space. 
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Recently And& et al. (1976a, b)  have presented another method for dealing with 
buoyant transport situations. In  this approach the quasi-Gaussian approximation 
is also used for the fourth-order products which appear explicitly, but the pressure 
correlations are neglected (as are the viscous terms). The resulting equations for the 
third-order quantities are solved as functions of time. Inequalities for the third-order 
quantities are derived from Schwarz's inequality, and these inequalities are applied at 
each time step, the third-order quantities being clipped when they exceed the bounds 
given by the inequalities. The results obtained from this method, when applied to 
buoyant convection, are excellent, though not superior to those we shall present. It 
seems clear, however, that the neglect of the pressure terms permits the third-order 
quantities to grow too rapidly, and the clipping necessary to prevent their exceeding 
physically possible values is unphysically abrupt. The fact that excellent results are 
nevertheless obtained suggests that the results are more dependent on whether certain 
global conditions are met (in this case realizability), rather than on the details of how 
those conditions are met. Certainly there are other examples of this sort of insensi- 
tivity: the success of the eddy-viscosity approach to turbulence is probably attribu- 
table to the fact that the correct amount of momentum is transported in a conser- 
vative manner, even though the details of the momentum transport mechanism are not 
correct. 

Although there appears to be no proof that the eddy-damped quasi-Gaussian 
approximation as used by Hanjalid & Launder (1972) or as used here (in an inhomo- 
geneous situation, with inclusion of the rapid part of the pressure correlations, etc.) 
satisfies realizability (i.e. assures that the third-order quantities never exceed physi- 
callypossiblevalues), the fact that Hanjalid &Launder (1972) obtained results in which 
unphysical behaviour is absent and, in particular, the excellent agreement of our 
results and those of And& et al. (1976a, b )  suggest that this is so in some sense. Of the 
two ways of achieving realizability, we prefer the eddy-damped quasi-Gaussian 
because (i) it avoids the physically unrealistic clipping, (ii) it  can be motivated by 
various physical arguments and (iii) it  leads to equations which can be given a per- 
suasive physical interpretation. In  what follows, we shall apply the eddy-damped 
quasi-Gaussian method to buoyant transport. 

For simplicity, let us agree to consider a mixed layer driven entirely by buoyancy, 
with no mean velocity. We anticipate that the terms in the mean velocity would in any 
case be negligible (reasoning by analogy with the case of Hanjalid & Launder 1972). 
Our turbulence will be axisymmetric in the vertical. Let us consider first the equation 
for 6, where 8 is the fluctuation in potential temperature and 0 its mean value and 
we use only the Boussinesq approximation (Lumley & Panofsky 1964, p. 59): 

~ -- -- ezu, = - (ezui ui),j + e2(ui q j  + ~ B U , ( ~ U ~ ) , ~  I 
- 

- 2 0 , ~  eui uj +pi 83 
- P, i SzlP I11 

+ ve2ui,ii + 2yeui e,ii. I1 (1)  

- 

Note that here and throughout we use ( ' )  to denote a( )/at and ( ),i to  denote a( )/axj; 
y is the thermometric diffusivity and pi is the buoyancy vector, which is directed 
vert,ically upwards in the atmosphere and is of magnitude g/T,, where g is the accelera- 
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tion due to gravity and To is the adiabatic temperature. By the use of the quasi- 
Gaussian hypothesis applied to the energy-containing eddies, the group of terms 
labelled I may be reduced to -- - -  

I = - e;j ui uj - ~ ( B U ~ ) , ~  euj. (2) 

The quasi-Gaussian hypothesis has been shown by the work of Frenkiel & Klebanoff 
(1967a, b)  to be justified in homogeneous turbulence. The existence of non-zero third 
moments, of course, is evidence of a non-Gaussian distribution; the justification for the 
use of a quasi-Gaussian hypothesis must lie in a perturbation expansion about the 
Gaussian equilibrium state similar to that of Herring (1965). We shall find that the 
relaxation time for the third moments is about 20% of the relaxation time for the 
second moments; if the relaxation time for each successive cumulant were correspond- 
ingly shorter, this would justify using a zero-fourth-cumulant approximation in the 
equation for the third cumulant, if the overall departure from equilibrium were small. 

The molecular transport term, labelled 11, may be reduced in the following way (we 
shall assume for simplicity that y = v ;  the case of y =/= v can be handled in the same way 
with slightly greater complexity): 

- 
11 = Y(e2ui), j j  - 2v(e,j e,j ui) - 4V(e,, eui,j). (3) 

In  the second term, O,i has a spectrum which peaks at wavenumbers in the dissipation 
range, while ui has a spectrum which peaks a t  wavenumbers in the energy-containing 
range. There is less and less overlap between these ranges as the Reynolds/P6clet 
number increases, so that the correlation between B,i and ui will go progressively to 
zero; i.e. the high wavenumber ripples in 8,i will average out over an excursion of ui. 
The quantity 8,i e,i, however, is the square of the amplitude of 6,j; if the high wave- 
number ripples in e,i are modulated by ui, so that their amplitude increases during an 
excursion of ui, then there will be a non-zero correlation regardless of the Reynolds/ 
P6cle t number. 

The first term is non-zero only because of inhomogeneity, and hence depends on the 
length scale of this inhomogeneity, which is usually the same aa the integral scale 
in developed turbulence; the ratio of the first and second terms is Ril ,  where Rl is 
the Reynolds number based on the fluctuating velocity and the integral scale of the 
turbulence. 

The third term can be evaluated by applying the same ideas as were used for the 
second. Both 8,i and ui,5 have spectra which peak in the dissipative range of wave- 
numbers, and hence are not well correlated with 8, which has a spectrum which peaks 
in the energy-containing range. It is possible, however, that if the amplitudes of f15 and 
ui,j are modulated by 0 then the combination O,j ui,i will have some non-zero contribu- 
tion, even though it is not a non-negative quantity. We can see, however, that this is 
not so in the following way: any quantity having its energy at high wavenumbers will 
not be well correlated with a quantity having its energy at low wavenumbere,? so that 
we may safely introduce a partial average over the high wavenumber components only. 
Hence we may consider 0, ui,, averaged over the small scales. Now, this is a first-rank 
tensor, and all isotropic first-rank tensors vanish. The small scales are anisotropic 

t 8 and 0, jj appear to be exceptions, since their product BO,,, can be rewritten as (88.,),j- 
6, o,,; in a homogeneous flow the average has the value - E&. The correlation coeflcient, how 
ever, behaves as RFI. 
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owing only to the straining of the large scales, and this induced anisotropy decreases 
as the Reynolds/P6clet number increases. Thus we may expect this small-scale- 
averaged local quantity to be less and less dependent on the anisotropy of the large 
scales, and closer and closer to zero, as the Reynolds/P6clet number increases, some- 
thing which was not true for 8,,8,,, which is non-zero even when isotropic. Thus the 
third term will go to zero as the Reynolds/PBclet number increases. 

Hence we are left finally with - 
I1 = - 2 ~ e  ui, (4) 

where €0 = ye,, O,i. Hanjalid & Launder (1972) presumed incorrectly that the viscous 
contribution would vanish at infinite Reynolds/PBclet number : however, it may be 
neglected in some cases, as we shall see later. 

The pressure term I11 may be separated (following Chou 1945) into a ‘rapid’ part 
and a ‘return-to-isotropy’ part (see also Lumley 1975). That is, we may take the 
divergence of the instantaneous equation for the velocity, which gives 

ui,juj,i = - ~ 2 p / p + p ~ e , ~  

by use of the incompressibility condition. We may define two pressures: 

and 

where p = p( l )+p@).  We refer to p(l)  as the ‘rapid’ part, because it corresponds in 
principle to the pressure appearing in rapid-distortion theory (Batchelor & Proudman 
1954); i.e. to the neglect of the nonlinear term. Here, of course, it  is necessary to gen- 
eralize rapid distortions to include rapid application of a gravitational field (see Gence 
1977). The second term p(2) we refer to as the ‘return-to-isotropy’ part, because it 
contains the effect of the nonlinear mixing of the turbulence by itself, which tends to 
make the turbulence more isotropic (Lumley & Newman 1977). This division is some- 
what artificial, of course, since the rapid part also tends to return the turbulence to 
isotropy under some circumstances. 

Taking Fourier transforms, for a homogeneous field we find 

for the rapid part; 8 and 6 are respectively the Fourier transforms of 0 and 02, and 
the asterisk indicates the complex conjugate. The integral is over the entire wave- 
number space, and K is the wavenumber vector. We want the simplest possible expres- 
sion for this part. Since we are considering a near-equilibrium situation, almost homo- 
geneous and almost isotropic, to correspond to the almost-Gaussian assumption, it is 
natural to take the isotropic value of this term. If we write 

G ,  = I 8 @ * ( K ,  K l /K2)  d K  (6) 

we have G,  = GZi and Gii = @. If Gi, were isotropic, we should have Gi, = @Si,, for 
- 

- P, (p p i p  = - f~~ 83 (7) 

for the rapid part. For the return-to-isotropy part we shall take 
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where .T3 is a time scale proportional to q"E, Z being the rate of dissipation of 48 ,where 
q2 = uiui. Zeman (1975) finds the factor of proportionality in Y3 to be about 0-1. This 
compares favourably with the value of 0.07 used by Hanjalid & Launder (1972) in the 
mechanical case, when consideration is taken of their neglect of pressure transport. 
Equation (8) is the eddy-damping assumption, introducing an irreversible relaxation 
of e2ui, where .T3 is the relaxation time. 

The smallness of the coefficient of proportionality between 3 andP/E permits the 
neglect of (4). That is, if we presume that 8 2  and €0 are well correlated, which we should 
expect from the analysis of small-scale intermittency (see, for example, Monin & 
Yaglom 1975, p. 584), then we can write 

- -  

- 

- --- 
eo ui 02ui ee/02. (9) 

-- 
Crude physical reasoning suggests that e,/O2oc Zip with a coefficient of order unity 

(see Tennekes & Lumley 1972, p. 95) ;  i.e. that the rate of transfer of @ stuff across the 
8 spectrum is determined by mixing by the energy-containing eddies. A more careful 
examination of the ratio of these time scales will appear in Newman, Launder & 
Lumley (1977) and Warhaft & Lumley (1977).  For our purposes, however, we need 
know only that the coefficient is of order unity; then ( 9 )  is of the same form as (8), but 
nearly an order of magnitude smaller. 

If we agree to consider slowly changing situations, so that the time derivative may 
also be neglected (again relative to the relaxation term, so that the slowness of the 
change need not be too great), we have 

In  exactly the same way, the equation for 83may be reduced to 
- -- -- - 
e2uj + e;, euj = - 2e3ee/82. ( 1 1 )  

Here the molecular transport term may not be neglected, since there is no pressure term 
with which to compare it. If this is substituted in (lo), we obtain 

Two things are evident: (i) the development of a corrected transport coefficient for 
e:,, which we shall find to occur everywhere when we have obtained equations for all 
the third-order quantities, and which we shall discuss a t  that time; (ii) the develop- 
ment of a reduced time scale for vertical transport in the inversion. If the mean 
temperature gradient is vertical, we shall have an (inverse) relaxation time for vertical 
transport 

- 

where N is the Brunt-Vaisala frequency. N2 is positive, of course, in an inversion 
(corresponding to stability), so that the time scale for vertical transport is corres- 
pondingly reduced, relative to that for horizontal transport. 
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Equation (1 2 )  contains another transport term, Oui uj, and we must write down the 
equation for it. The same principles may be applied, the only complication arising 
with regard to the rapid part of the pressure correlation: 

If we designate the first half of the integral by Glik, then we have GlikGilk = and 
= 8%k. In  addition, if the field is homogeneous we have Gkik = 0. This may be 

obtained from ( e 2 u k ) , k  = o = ~oo , ,u , ,  which implies K,B&; = 0. If we now assume 
t h h  Glik may be expressed as a linear combination of the vectors 02ui, we obtain 

- 
- - 

- 

Some of the viscous terms may be neglected relative to the relaxation term, but 
some may not. Note that we are using the same relaxation time %, i.e. assuming that 
all third-order quantities relax at  the same rate. We now have another term appearing, 
u, uj u k ,  and we must write down an equation for this. Again, we obtain an integral 
representation for the rapid part of the pressure correlation, and assume that it may be 
represented as a linear function of Oukul, applying the various symmetry and in- 
compressibility requirements, but we fhd one requirement too few to determine all the 
coefficients. It is necessary to introduce an appealing, but difficult to justify, assump- 
tion to make the form determinate. Specifically, if we define 

we assume that Gpi, = +(Hpi, + Hpi,k). This is convenient because an incompressi- 
bility condition can be applied to Hpikl, but not to Gpik,. We obtain for ui uj u k  

------ 
(% uk) ,p  up ul + (% %),p up uk + ( u k  ul),p u p  ui 

- - -  - 
= - ui uk ul/& +&(Pi OUk ul + P k  0% ul + pl OUi uk) + i?d8ikPp OUp ul 

- + Ji,Pp Oup uk + s,pp Oup ui) - 2 z ( 6 i k q 2 u l  +ai1& + &&)/3$* (18) 

There are surely other assumptions as appealing as (17). For example, Zeman (1975) 
has a very approximate technique for deriving forms for all the buoyant terms in 
these third-moment equations. In  the equation f o r 2 ,  our form gives ?@% while his 
gives 1$P?@; in the equation for u; u3 ours gives &POT+ &,9Oxwhile his gives */3OX 
In  the absence of adefhitive assumption that canbe justified physically, it  is comforting 
to find that physically reasonable assumptions give results that are not very different 

-- 
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from one another, and that the differences do not appear to be very significant, since 
the results of computations with either of the above forms are quite similar. 

Similarly, some of the viscous te,rms can be neglected, and some cannot. 
This set of equations (1  2 ) ,  (1  6) a i d  (18) is now closed, and can in principle be solved 

for the third-order fluxes. For the particular case of a vertically axisymmetric 
buoyancy-driven mixed layer, we may write the equations in matrix form: 

where a prime denotes and the obviously negligible contributions from the viscous 
terms (those added to the diagonal elements) have been neglected. 

The exact inversion of this matrix requires only stamina. An approximate inversion, 
however, will serve our purpose as well. We make two approximations: first, we pre- 
sume that the remaining molecular transport terms are negligible, which is justifiable 
if the various components of the third-order fluxes are of approximately equal size; 
second, we presume that the influence of gravity (embodied in a suitably non-dimen- 
sionalized p)  is weak, and we keep only terms of first order in /3. We obtain 
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where 
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E = I - ~ p . T ~ @ ' ,  

Zeman (1975) has generated a complete inversion, as well as an even more approximate 
one; (20) is somewhere between the two in accuracy. The various multipliers A ,  . . ., E 
have clearly been reduced to the form 1 - aN29-; by the assumption that the influence 
of /3 is small; they should all be replaced in computations by (1  + aN29-;)-1. Note that 
8u2 is not necessary in the computation. 
- 

3. Interpretation of the buoyant transport 
The diagonal terms in (20) are of exactly the form resulting from the Priestley- 

Swinbank effect (1947) extensively discussed by DeardoriT (1966,1972), and produce a 
counter-gradient vertical heat flux. To see this, consider a homogeneous buoyant 
flow without mean velocity in an approximately steady state and modelled according 
to Donaldson (1972; see also Lumley 1975): 

~ - 
@,i8ui = - E g ,  (2 la)  

Defining 

which may be inserted in (21 b )  to give 
- -  

i& = - q { ~ , ~ ~ + e ~ , p , ~ ( 2 / 3 ~ ) ) 0 , ~ .  (24) 

In  fact, in this artificially homogeneous situation the heat flux cannot be against the 
gradient [from (23)]; a flux divergence is necessary to produce this effect. In  a stable 
situation, however, when the vertical heat flux is negative, the vertical transport will 
be substantially reduced. 

We may construct a simple physical model which will explain the presence of the 
additional terms in the diagonal diffusion coefficients of (20), or in (24). Consider 
gradient transport of temperature, presumed indelible. Then we can write in a homo- 
geneous field (without mean velocity) 

e(x,t) = - - @ , J ~ ~ - - X ~ ( X , ~ I O ) ) ,  P 5 a )  

with 

&(x, t i t ' )  = Xi + Ui(X(X, t l t " ) ,  t")dt",  It"' 
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- and 
eui = o , ~ ~ ~ ( x , ~ )  ( z j - ~ j ( ~ , t l o ) ) ,  

U, . (X ,  t )  (Zj - X,(X, t l0 ) )  = u,.(x, t )  U j ( X ( X ,  tlt"), t")dt", (25b)  so" with 

where we presume t to be large. X(x ,  ti t ')  is the position a t  time t' of the material point 
which is at x at t. Now, in a flow with buoyancy, a moving parcel of fluid is subject to 
acceleration due to buoyancy. We can write very approximately tii = ,!lie for the 
additional acceleration. Thus a hot parcel, for example, will be accelerated upwards 
until it has penetrated far enough into the gradient to reverse the temperature ano- 
maly (since it is presumed to carry its temperature indelibly) and hence the vertical 
velocity will be quite persistent. We are accustomed to write in non-buoyant homo- 
geneous flows 

- jOW U i ( X ,  t )  U , ( X ( X ,  t l t") ,  t")  dt" = uiui9-, ( 2 6 )  

which presumes that the Lagrangian integral time scale is the same regardless of 
direction; this is clearly only an approximation in an anisotropic non-buoyant homo- 
geneous flow, an approximation which is likely to be worse the larger the anisotropy. 
In  a buoyant homogeneous flow it is certainly not true. A point moving upwards will 
have a much larger integral scale than a point moving horizontally. We can approxi- 
mate this by considering an artificial velocity field u!(x, t ' )  which at t' = t is identical 
with ui(x,  t ) .  For t' > t ,  however, u;(x, t') evolves with g = 0 (or with uniform tem- 
perature, which is equivalent). Then we can write 

Ui(x(x,  t i t ' ) ,  t ' )  = u;(x(x ,  t i t ' ) ,  t ' )  +a pi e ( x ( x ,  t i t" ) ,  t") dt", (27) SI' 
where a is an unknown coefficient. This is presumably correct only to first order, since 
there will be a nonlinear contribution from the inertial terms. We may now form the 
integral in ( 2 6 ) :  

Now, the first integral may safely be written as (as),  while the second integral may be 
written as 

Now the correlation coefficient p( - 7 )  will have zero integral, since ui is stationary and 
Bis the derivative ofa stationary quantity (Tennekes & Lumley 1972, p. 216) .  This is a 
necessary condition for the integral in ( 2 9 )  to have a finite limit. We expect the limit to 
be negative; this can be seen if we make a simple non-mixing model of the motion of 
the parcel of fluid in a temperature gradient; we obtain 

- -  
p( - 7 )  = cosp7 + (O'wz/pBw) sinpr, (30) 
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FIQUFZE 2. Inversion rise rates (Zeman 1975). So is the initial value of the buoyancy parameter 
yr  ho/Te0, where yi is the inversion lapse rate, h, is the initial mixed-layer height and T,, is the 
initial value of the characteristic r.m.8. temperature fluctuations in free convection, given by 
8w,/wU,,, where Owo is the surface heat flux and w , , ~  = (/30Gho)*. Here ho = 200 m, w * ~  = 1 m/s 
and T,, = 0.15 "C. 

- - 

- -  
where,u2 = @'/3 (treating the stable case). The coefficient O'w2/pBw < 0 in a homogen- 
eous steady flow. The integral is asymptotically proportional to O'w2t/,u28w (the 
limit is not finite here, because the form (30) does not have zero integral, since it is 
without mixing). Thus we can write 

- -  

since the integral has the dimensions of (time)2 and the coefficient of proportionality 
has been absorbed in a. Hence we have for the diffusion coefficient 

- 
y{ud u5 + up5 Qq}, (32) 

which is essentially the same form as (24). 

inversion, there is a considerable reduction in the upward diffusion coefficient 
Note that if p3 > 0 and we < 0, corresponding to an upward flux entering an 

since the entering parcels of fluid have roughly 
- 
P2 = ( ~ / c ) b q o  (33) 

(from the definition of F, and the fact that the dissipation is roughly the production, 
which is given almost entirely by /3BG), where GI,, is the value entering the inversion; 
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-- 
Normalized heat flux, Bw/B wo 

FIGURE 3. Heat-flux profiles (Zeman 1975). So is the initial value of the buoyancy parameter 
yr h,/T*,. Here ho = 200 m, Ow, = 0.15 "C ma-], 8, = 1 3 4  and t = tw*,/h,. 

- - 

a t  the top of the mixing region at the inversion base, the entering heat flux is approxi- 
mately reversed, so that the diffusion coefficient (32) becomes roughly 

if we take a = 2/3c and 
zero at the top of the entrainment layer, as it should. 

= r. Hence the diffusion coefficient is capable of going to 

4. Computational verification and discussion 
A computation of this vertically anisymmetric buoyancy-driven flow was carried out 

using second-order modelling techniques and a simplified version of (20). The details 
are reported in Zeman (1975).7 Realistic inversion rise rates and heat-flux profiles 

t The only difference between the results from computing with (20) and with Zeman's (1 976) 
version, which is not linearized in buoyancy (though simplified in other respects), is a (negative) 
value of the energy flux at the surface (see figure 5)  about twice as large. 

2 0  P L M  84 
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- 

aJ 
2 
G 0.6 - - 
2 

0 4 -  

0 2 -  

0 2  0 4  0 6  - 
Normalized vertical energy, N ? I ~ , ?  

FIQURE 4. Predicted vertical energy compared with experimental data (from Zeman & Lumley 
1976). -0-, Willis & Deardorff (1974), case S1 (8 = 9O);-A-, Willis & Deardorff (1974), cam 
8 2  (S = 200) ; 0, A ,  Lenschow (1970,1974), Lenschow & Johnson (1968) ; 0, Telford & Warner 
(1964). 

(figures 2 and 3) were obtained. Attention should be drawn to the negative region of the 
heat-flux profiles at the inversion base. This negative region, which corresponds to the 
overshoot in the mean temperature profile, indicates that the entrainment of stably 
stratified fluid at the inversion base is being correctly modelled. Since the mixed-layer 
dynamics in this case are entirely dependent on the model for the third-order fluxes, 
this is a strong indication that this model is broadly correct. 

The material presented in figures 2 and 3 is somewhat indirect. Of greater interest 
are the fluxes themselves. I n  figures 4 and 5 respectively we present the vertical energy 
and flux of turbulent energy compared with measurements (both from Zeman & 
Lumley 1976). It can be seen that the computed values are qualitatively as sketched 
in figure 1 (a )  and compare favourably with measurements. 

Note that, although (20) is a gradient transport form, the dependence of each flux 
on the gradients of several quantities saves it from the errors of the simplistic version 
presented in figure 1 ( b ) .  Looking a t  2 for example, the downward transport in the 
lower half of the layer resulting from the gradient of 2 is more than offset by the 
transport resulting from the gradient of the heat flux. 

I n  the statistical mechanics of mixtures, there are restrictions on the possible 
values of the diffusion and cross-diffusion coefficients. Here there are also restrictions, 
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- 0.04 0 0.04 0.08 0.12 0.16 

(pF+plv/p)l1vl, f i / 2 ,v f  
FIGURE 5. Predicted fluxes of turbulent energy compared with data (from Zeman & Lumley - -  

1976). -, (+q2w +pw/p)/w$ ; other symbols &B in figure 4. 

corresponding to the requirement that the eigenvalues of the diffusion coefficient 
matrix in (20) should have non-negative real parts. This is essentially the same re- 
striction as for molecular transport; there, however, the second law of thermodynamics 
is responsible, requiring that gradients should not become more steep. In  the turbulent 
case, stability considerations produce the same requirement. If the real part of any of 
the eigenvalues of the matrix in (20) were negative, small ripples in the distribution of 
any of the second-order quantities would be amplified indefinitely. From a compu- 
tational point of view, it is thus essential that some restriction be placed on the values 
of the coefficients in (20). There does not appear to be any convenient necessary and 
sufficient condition that will guarantee that all eigenvalues will have positive real 
parts. Schumann (1976) has recently shown that a necessary, though not sufficient, 
condition is that all diagonal coefficients Kii (no sum) be positive and that 

Kji Kij < Kii K,j,  

i $: j (no sum). A necessary and sufficient condition would be that all determinants of 
all orders that can be formed which are symmetric about the diagonal be positive; of 
course, many of these conditions would be redundant, since the classical condition is 
that the uppermost determinant of each order symmetric about the diagonal be 
positive (Jeffreys & Jeffreys 1956, p. 137). 

20-2 
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